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Abstract 
 Sepsis and septic shock are life-threatening medical conditions caused by blood infection, 
resulting in unwanted reactions from the human immune system. As the outcome of these conditions 
benefits from early intervention, there is increasing interest in the prognostic value of various 
biomarkers, especially lactate level, established to effectively categorize sepsis severity and predict 
patient survival. To explore and verify these predictive values, we applied random forest and logistic 
regression models, with bagging and cross-validation for minimal overfitting, to data on patients at 
the National Hospital of Tropical Diseases, Vietnam. Out-of-sample accuracy and area under the 
curves (AUC) of receiver operating character (ROC) curves were used to assess these models. Our 
results reinforced the merits of regularly monitoring lactate levels (AUC = 0.77, accuracy = 76.12%), 
and identified predictive potential for procalcitonin level, along with other infection biomarkers, in 
blood (AUC = 0.66, accuracy = 71.64%). Future studies should account for time of death and focus 
on procalcitonin level in blood as a predictor in combination with other infection biomarkers. 
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1) Introduction  
 Sepsis is a life-threatening medical condition, in which the immune system of the body reacts to an 
infection typically caused by bacteria in blood (Gyawali et al., 2019). In contrast to other localized infections, 
sepsis is a multifaceted disruption between the pro-inflammatory and anti-inflammatory pathways that induces 
a cascade of cytokine activations, or also known as cytokine storm (Jarczak et al., 2021), and results in a wide 
range of possible symptoms, including low temperature, low blood pressure, rapid breathing, and low urine 
output (Vincent, 2016). Severe sepsis can eventually progress to septic shock, a condition characterized by low 
blood pressure and organ dysfunction (Singer et al., 2016). Despite advancement in the understanding of the 
pathophysiology as well as in the monitoring tools and resuscitation measures, sepsis and septic shock remain 
among the most prominent immediate causes of death with extremely high morbidity and mortality rate, 
especially in critically ill patients (Kaukonen et al., 2014; Rhee et al., 2019). It has been estimated that these 
conditions affect approximately 1.7 million adults with over 250,000 deaths in the United States each year, 
causing a significant burden on both human and financial resources (Rhee et al., 2017).  
 Because the outcome of sepsis and septic shock has been shown to benefit from early intervention 
(Kumar et al., 2006), there is an increasing interest in the prognostic values of various biomarkers – medical 
signs that objectively indicate the clinical state of the patients (Strimbu & Tavel, 2010). Among these 
biomarkers, lactate level has been established as an important measurement capable of categorizing the severity 
of sepsis and prognosing the survivability of patients with septic shock (Filho et al., 2016; Marty et al., 2013; 
Wacharasint et al., 2012). Lactate is the product of glycolysis under anaerobic condition with the catalysis effect 
of lactate dehydrogenase during the tricarboxylic acid cycle.  The amount of lactate produced increases 
(hyperlactatemia) when patients suffer from septic shock as their blood circulation and respiration rate 
decreases, reducing the oxygen level of cells (Semler & Singer, 2019). Despite lactate being regarded as an 
effective prognostic biomarker, there is contradicting evidence on which time post-diagnosis of septic shock 
for lactate measurements would be the most appropriate biomarker, in addition to a lack of exploration on 
other potentially effective biomarkers. Therefore, we performed our study on patients at the National Hospital 
of Tropical Diseases in Vietnam with the following goals: (i) examine the optimal post-diagnosis time for 
measuring lactate level to serve as a good predictor and (ii) identify other potential biomarkers for sepsis and 
septic shock prognosis. 
 
2) Materials & Methods  
2.1) Study Population 
 The data contains information on all patients over 18 years old diagnoses with septic shock at the 
National Hospital of Tropical Diseases, Vietnam from June 2018 to July 2022. The criteria for septic shock 
diagnosis are proposed by the guidelines of the Third International Consensus Definitions for Sepsis and Septic 
Shock (Sepsis-3) (Singer et al., 2016) and Surviving Sepsis Campaign (Rhodes et al., 2017), including: two or 
more Systemic Inflammatory Response Syndromes (temperature > 38°C or < 36 °C; heart rate > 90/min; 
respiratory rate > 20/min or PaCO2 < 32mm Hg (4.3 kPa); white blood cell count > 12.000/mm3 or < 
4000/mm3 or > 10% immature bands) and a Sequential Organ Failure Assessment (SOFA) score for the 
assessment of clinical condition over 2. The patients were also evaluated on the use of vasopressors required 
to maintain the mean arterial pressure ≥ 65 and lactate level ≥ 2 mmol/L for septic shock. Any patients that 
either were transferred from other hospitals, had a history of liver/kidney failure, or experienced 
circulatory/respiratory arrest before admittance were excluded from the study.  
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2.2) Data Collection & Processing 
 On admission to the intensive care unit (ICU), demographic information and various biomarkers 
related to respiration, blood circulation, kidney/liver/heart failure, and infections at the time of admittance and 
septic shock were recorded, with the exception of lactate level (Appendix 7.1 – Table 1.). The lactate level was 
measured at time of diagnosed septic shock (T0), 24 hours after the diagnosis (T1), 48 hours after the diagnosis 
(T2), and 72 hours after the diagnosis (T3). The outcome of the treatment, either death or survival, were also 
documented at the end. 

R (version 4.2.1) was used to process and analyze the data upon retrieval. Exploratory data analysis was 
performed to provide a better understanding of the study population, identify collinear variables, and pinpoint 
potentially biased or problematic ones. Among each group of collinear variables identified, one representative 
variable was chosen to be included in data analysis. Two new variables were derived from the lactate levels at 
different time points, namely the peak lactate level for each patient and the associated time point. These new 
variables would facilitate a better assessment of lactate as an overall predictor while accounting for the 
discrepancies among the time points at which each patient’s lactate level peaks. To account for missing entries 
in the data, k-nearest neighbors was used as a method to impute missing values for predictors other than those 
related to lactate. Any missing entries for lactate levels were extrapolated by carrying the last-available value 
forward. 
2.3) Data Analysis 
 Once the data had been processed, a random forest model (Breiman, 2001) – collections of 
classification trees fit to differently bootstrapped data sets whose majority voting decides the classification result 
of the model – was applied to determine the variables that could best predict the treatment outcome of septic 
shock patients. To ensure the robustness of the model, a grid search was performed to find the optimal tuning 
paraments, including the number of decision trees in the forest, the number of variables randomly sampled to 
be candidates at each split in a decision tree, and the maximum number of nodes in each tree. Three iterations 
of the grid search were performed, starting with a wide span of values for the parameters, with each iteration 
closing in towards the most optimal values. 
 After a set of optimal tuning parameters was found, the random forest model was applied to the data 
and the importance of each variable was examined using mean decreases in Gini Index. High-importance 
variables – those with large mean decreases in Gini Index – would subsequently be used for logistic regression 
in hope of discovering simple models that could predict the treatment outcome with similar levels of accuracy 
as the complicated random forest model. To determine the optimal post-diagnosis time to measure lactate 
levels, logistic regression with six-fold cross-validation was performed using each of the time points in addition 
to the peak lactate levels as predictor variables. The efficacy of each model was assessed using out-of-sample 
accuracy rate and the area under the curves (AUC) of the receiver operating characteristic curve (ROC). 
 
3) Results  
 The descriptive analysis reveals that the study population includes 134 patients, with an average age of 
60.74 and a higher percentage of patients over 65, leaning towards the older end of the spectrum. In addition, 
the mean number of days in hospital is 13 while in ICU is 8, which indicates that the conditions of patients 
progress rapidly (Appendix 7.1 – Table 1.). The data consisting of 33 biomarkers had approximately 16% 
missing entries, all of which were imputed through either k-nearest neighbors or extrapolation. 
 Our grid search suggested the optimal random forest use 2000 decision trees, each containing a 
maximum of 9 nodes, and each fit using a randomly selected set of 15 candidate variables. Upon examining the 
importance of the variables using the mean Gini Index decreases (GID) (Appendix 7.2 – Table 2.), we identified 
the variables with high GID. This consisted of the total numbers of days hospitalized (GID = 7.25), lactate 
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level in blood 72 hours post-diagnosis (GID = 6.04), lactate level in blood 48 hours post-diagnosis (GID = 
3.56), procalcitonin level in blood at time of diagnosis (GID = 2.98), and peak lactate (GID = 2.62). 
 Due to the question of the study, we did not focus on the age of the patients and their number of days 
in hospital/ICU. Other high-importance variables from the random forest model were grouped by categories, 
with the exception of procalcitonin level and peak lactate level across all time points. These combinations are 
infection (procalcitonin level + C reactive protein level), immunity (platelet level + white blood cell level + 
neutrophil level + lymphocyte level), liver function (albumin level + aspartate aminotransferase level + alanine 
transaminase level), blood function (red blood cell level + D-dimer + hemoglobin level), and metabolism (urea 
level + sodium level + potassium level). Logistic regression models were subsequently applied to these 
combinations of variables along with peak lactate level and procalcitonin level. The resulting ROC curves show 
that while random forest model predicted the treatment outcome most effectively (AUC = 0.81, accuracy = 
81.34%), both the models using peak lactate level (AUC = 0.77, accuracy = 76.12%) and the infection 
combination (AUC = 0.66, accuracy = 71.64%) demonstrate adequate effectiveness (Appendix 7.3 – Figure 3. 
& Table 3.). In addition, we also performed logistic regression on each post-diagnosis time point of lactate 
levels and compared them to logistic regression model of peak lactate level and the random forest model to 
identify the better time points. These comparisons indicate that later time points (T2 and T3) would be better 
in predicting the outcome of the patients (AUC = 0.79, accuracy = 76.12%; AUC = 0.82, accuracy = 76.87%) 
(Appendix 7.3 – Figure 4. & Table 3.). 
 
4) Discussion 
 Measuring post-diagnosis lactate levels has been empirically established to be an effective method for 
predicting treatment outcome of patients with severe sepsis and septic shock (Filho et al., 2016; Marty et al., 
2013; Wacharasint et al., 2012) and our findings continue to support this notion. Further examination of the 
cumulative results from random forest model and the comparisons between logistic regression models of lactate 
levels at different time points suggest that lactate levels can be a strong predictor when measured closer to a 
patient’s eventual treatment outcome. This would normally correspond to later time points (T2 and T3) rather 
than earlier ones (T0 and T1). In addition to lactate, our analysis also reveals that procalcitonin level in blood 
can be a good predictor, especially when combined other biomarkers of the same category of infection 
indication such as C-reactive protein. 

Despite our findings, it is crucially important to recognize that our study possess shortcomings that 
can be improved and revised by future work. To begin with, as mentioned previously, there is individual 
variation in the way lactate variables were measured: patients might die within 72 hours of their diagnosis, 
resulting in missing values for lactate levels at latter time points (Appendix 7.1 – Figure 2.). We tried to reduce 
this variation by transferring the closest available lactate values to latter time points for such patients but this 
transformation makes our findings less conclusive. In future research, we would propose that regularly 
monitoring of the lactate levels in patients with severe sepsis or septic shock can be useful in predicting their 
outcomes, rather than focusing on a specific time point. We would also suggest that the time of death should 
be recorded in the future to perform Cox regression with time-dependent covariates for more robust 
conclusions. Moreover, the data we retrieved from the National Hospital of Tropical Disease was missing a 
large portion of its data across all variables. This required us to perform imputation method, which may have 
affected our final conclusion to a certain extent. Lastly, having found that procalcitonin level may be a good 
predictor for treatment outcome, we believe that more focus should be placed on studying this biomarker, 
potentially in combination with other biomarkers related to the indication of infection, such as receptor 
expressed on myeloid cells-1 (sTREM-1) and immunoglobulin-Fc fragment receptor I (FcyRI) (Gibot et al., 
2012). 
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7) Appendix  
7.1) Exploratory Data Analysis 
Type of 

information 
Variables/Biomarkers Mean Standard 

deviation 
Range 

Demographic 
information & 

Evaluation 

Patient Age 60.74 14.75 22-98 
Patient ID ~ ~ ~ 
The total number of days in hospital 13.04 11.67 1-70 
The total number of days in ICU 8.45 7.3 1-36 
The result of the treatment ~ ~ ~ 
Sequential Organ Failure Assessment 12.9 3.61 3-21 

Clinical 
Measurements 
(All variables 

in analysis 
were recorded 
at the time of 

diagnosed 
septic shock, 

with the 
exception of 
lactate level) 

Mean arterial pressure 56.35 10.84 0-86.7 
Respiratory rate 29.55 7.16 14-50 
Pulse rate 116.7 26.59 60-280 
Amount of urine 1.26 0.44 1-2 
Site of initial infection ~ ~ ~ 
Albumin level 26.83 5.31 15-44 
Procalcitonin level 39.03 31.65 0.39-100 
C Reactive Protein level 151.5 112.48 5.1-652 
Pro b-type natriuretic peptide level 10,602.16 12,173.25 50.94-36,000 
Creatinine level 170.36 125.85 42-726 
Platelet level 130.68 110.08 2-564 
White blood cell level 12.37 7.13 0.3-31.1 
Neutrophil level 80.44 19.36 2.74-97.5 
Lymphocyte level 11.23 14.93 1.46-6.62 
Red blood cell level 3.47 0.85 1.46-6.62 
Hemoglobin level 103.2 22.09 62-186 
Urea level 14.83 9.69 3.2-55.1 
Sodium level 134.23 15.57 3.09-163 
Potassium level 4.05 0.85 2.8-7.93 
Bilirubin level 30.88 35.01 3.2-294.8 
Aspartate aminotransferase level 394.3  925.57 20.7-6933 
Alanine transaminase level 263.1 918.74 2-7170 
Percent prothrombin 51.93 21.09 10-101 
Fibrinogen level 3.56 2.04 0.18-10.93 
D-dimer level 15,184 22375.88 122-128,000 
The number of failed organs 3.4 1.1 1-5 
The type of bacteria responsible for septic shock ~ ~ ~ 
Lactate levels at the time of diagnosed septic shock 
(T0), 24h after the diagnosis (T1), 48h after the 
diagnosis (T2), and 72h after the diagnosis (T3) 

T0: 5.52 
T1: 5.56 
T2: 4.67 
T3: 3.72 

T0: 3.97 
T1: 4.43 
T2: 3.98 
T3: 3.2 

T0: 1.18-22.49 
T1: 0.81-24.33 
T2: 0.95-20.04 
T3: 0.92-16.53 

Table 1. Measurements of patients at time of admittance to ICU and at time of diagnosed septic shock 
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Figure 1. The distribution of Sequential Organ Failure Assessment Score in the study population  

(Higher scores indicate more severe conditions with more dysfunctional organs) 
 

 
Figure 2. The lactate levels of patients at different post-diagnosis time points  

(Surviving patients are more likely to have lactate level measured at all time points) 
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7.2) Variable importance in random forest model  
Variables/Biomarkers Mean Gini Index Decreases 

Patient age 1.35 
The total number of days in hospital 7.25 
The total number of days in ICU 1.93 
Mean arterial pressure 0.88 
Respiratory rate 1.08 
Pulse rate 0.8 
Amount of urine 0.21 
Albumin level   1.29 
Procalcitonin level 2.98 
C-reactive protein level 1.03 
Pro b-type natriuretic peptide level 0.79 
Creatinine level 1.02 
Platete level 0.94 
White blood cell level 0.63 
Neutrophil level 1.01 
Lymphocyte level 0.77 
Red blood cell level 0.9 
Hemoglobin level 1.13 
Urea level 1.32 
Sodium level 0.8 
Potassium level 1.3 
Bilirubin level 0.77 
Aspartate aminotransferase level 1.47 
Alanine transaminase level 0.78 
Percent prothrombin 0.82 
Fibrinogen level 1.04 
D-dimer level 1.32 
The number of failed organs 0.85 
Lactate level at peak 2.62 
The time of lactate level at peak 0.25 
Lactate levels at the time of diagnosed septic 
shock (T0), 24h after the diagnosis (T1), 48h 
after the diagnosis (T2), and 72h after the 
diagnosis (T3) 

T0: 1.18 
T1: 1.56 
T2: 3.56 
T3: 6.04 

Table 2. The mean Gini Index decreases in each variable in the random forest model with a set seed to 
ensure reproducibility (bolded variables indicate high importance)  
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7.3) The ROC curves of different models 

 
Figure 3. The ROC curves of logistic regression models of different variable combinations in comparison to 

the random forest model 
 

 
Figure 4. The ROC curves of logistic regression models of different lactate time points in comparison to the 

random forest model  
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Model AUC Accuracy  
Random forest 0.8074 81.34% 
Lactate peaks 0.7652 76.12% 
Procalcitonin 0.6168 71.64% 

Infection 0.6571 71.64% 
Immunity 0.6168 69.4% 

Liver 0.5276 70.9% 
Blood 0.5738 71.64% 

Metabolism 0.6121 70.9% 
Lactate level at time of diagnosis (T0) 0.6882 70.15% 
Lactate level 24h post-diagnosis (T1) 0.7211 71.64% 
Lactate level 48h post-diagnosis (T2) 0.7880 76.12% 
Lactate level 72h post-diagnosis (T3) 0.8211 76.87% 

Table 3. The out-of-sample AUC value and the accuracy rate of each model  


